Chapter 19. Mean and Median (For Ungrouped Data Only)

Exercise 19(A)

Solution 1:

The numbers given are 43, 51, 50, 57, 54

The mean of the given numbers will be

 $=\frac{43+51+50+57+54}{5}$ $=\frac{255}{5}$ =51

Solution 2:

The first six natural numbers are 1, 2, 3, 4, 5, 6

The mean of first six natural numbers

 $= \frac{1+2+3+4+5+6}{3}$ $= \frac{21}{3}$ = 3.5

Solution 3:

The first ten odd natural numbers are 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

The mean of first ten odd numbers

$$= \frac{1+3+5+7+9+11+13+15+17+19}{10}$$
$$= \frac{100}{10}$$
$$= 10$$

Solution 4:

The all factors of 10 are 1, 2, 5, 10

The mean of all factors of 10 are

$$= \frac{1+2+5+10}{4}$$
$$= \frac{18}{4}$$
$$= 4.5$$

Solution 5:

The given values are x + 3, x + 5, x + 7, x + 9, x + 11

The mean of the values are

$$= \frac{x+3+x+5+x+7+x+9+x+11}{5}$$
$$= \frac{5x+35}{5}$$
$$= \frac{5(x+7)}{5}$$
$$= x+7$$

Solution 6:

(i) The given numbers are 9.8, 5.4, 3.7, 1.7, 1.8, 2.6, 2.8, 8.6, 10.5, 11.1

$$\frac{x^{2} + x^{2} + x^{3} + x^{4} + x^{5} + \dots + x^{n}}{n}$$

$$= \frac{9.8 + 5.4 + 3.7 + 1.7 + 1.8 + 2.6 + 2.8 + 8.6 + 10.5 + 11.1}{10}$$

$$= 5.8$$

(ii) The value of
$$\sum_{i=1}^{10} (x_i - \overline{x})$$

We know that

$$\sum_{i=1}^{n} (x_i - \bar{x}) = (x_1 - \bar{x}) + (x_2 - \bar{x}) + (x_n - \bar{x}) = 0$$

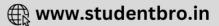
Here

$$x = 5.8$$

Therefore

$$\sum_{i=1}^{10} \left(x_i - \overline{x} \right)$$

= (9.8-5.8) + (5.4-5.8) + (3.7-5.8) + (1.7-5.8) + (1.8-5.8) + (2.6-5.8) + (2.8-5.8) + (8.6-5.8) + (10.5-5.8) + (11.1-5.8) = 4-.4-2.1-4.1-4-3.2-3+2.8+4.7+5.3 = 0



Solution 7:

Given that the mean of 15 observations is 32

(i)resulting mean increased by 3

=32+3

=35

(ii)resulting mean decreased by 7

=32 - 7

= 25

(iii)resulting mean multiplied by 2

=32*2

=64

(iv)resulting mean divide by 0.5

 $=\frac{32}{.5}$ = 64

(v)resulting mean increased by 60%

$$= 32 + \frac{60}{100} \times 32$$

= 32 + 19.2
= 51.2

(vi)resulting mean decreased by 20%

$$= 32 - \frac{20}{100} \times 32$$

= 32 - 6.4
= 25.6

Solution 8:

Given the mean of 5 numbers is 18

Total sum of 5 numbers

=18*5

=90

On excluding an observation, the mean of remaining 4 observation is 16

=16*4

=64

Therefore sum of remaining 4 observations

total of 5 observations-total of 4 observations

= 90 - 64

= 26

Solution 9:

(i)Given that the mean of observations x, x + 2, x + 4, x + 6 and x + 8 is 11

$$Mean = \frac{observations}{n}$$

$$11 = \frac{x + x + 2 + x + 4 + x + 6 + x + 8}{5}$$

$$11 = \frac{5x + 20}{5}$$

$$x = \frac{35}{7}$$

$$x = 7$$

(ii) The mean of first three observations are

$$= \frac{x + x + 2 + x + 4}{3}$$

= $\frac{3x + 6}{3}$
= $\frac{3*7 + 6}{3}$ [since x=7]
= $\frac{21 + 6}{3}$
= 9

Get More Learning Materials Here :

CLICK HERE

Solution 10:

Given the mean of 100 observations is 40.

$$\frac{\sum x}{n} = \overline{x}$$

$$\Rightarrow \frac{\sum x}{n} = 40$$

$$\Rightarrow \quad x = 40 \times 100$$

$$\Rightarrow \quad x = 4000$$

Incorrect value of x=4000

Correct value of x=Incorrect value of x-Incorrect observation + correct observation

=4000-83+53

=3970

Correct mean

 $= \frac{\text{correct value of } \sum x}{n}$ $= \frac{3970}{100}$ = 39.7

Solution 11:

Given that the mean of 200 items was 50.

$$Mean = \frac{\sum x}{n}$$
$$\Rightarrow 50 = \frac{\sum x}{200}$$
$$\Rightarrow x = 10000$$

Incorrect value of $\sum x = 10000$

Correct value of

$$\sum x = 10000 - (92 + 8) + (192 + 88)$$
$$= 10000 - 100 + 280$$
$$= 10180$$
Correct mean

 $= \frac{\text{correct value of } \sum_{x}}{n}$ $= \frac{10180}{200}$ = 50.9

Solution 12:

Mean of 45 numbers = 18 \Rightarrow Sum of 45 numbers = 18 × 45 = 810 Mean of remaining (75 - 45)30 numbers = 13 \Rightarrow Sum of remaining 30 numbers = 13 × 30 = 390 \Rightarrow Sum of all the 75 numbers = 810 + 390 = 1200 \Rightarrow Mean of all the 75 numbers = $\frac{1200}{75}$ = 16

Solution 13:

Mean weight of 120 students = 52.75 kg \Rightarrow Sum of the weight of 120 students = 120 × 52.75 = 6330 kg Mean weight of 50 students = 51 kg \Rightarrow Sum of the weight of 50 students = 50 × 51 = 2550 kg \Rightarrow Sum of the weight of remaining (120 - 50) 70 students = Sum of the weight of 120 students - Sum of the weight of 50 students = (6330 - 2550) kg = 3780 kg \Rightarrow Mean weight of remaining 70 students = $\frac{3780}{70}$ = 54 kg

Solution 14:

Let the number of boys and girls be ${\boldsymbol x}$ and ${\boldsymbol y}$ respectively. Now,

Given, Mean marks of \times boys in the examination = 70

 \Rightarrow Sum of marks of x boys in the examination = 70x

Given, Mean marks of y girls in the examination = 73

 \Rightarrow Sum of marks of y girls in the examination = 73y

Given, Mean marks of all students (x + y) in the examination = 71

 \Rightarrow Sum of marks of all students (x + y) students in the examination = 71(x + y)

Now, Sum of marks of all students (x + y) students in the examination

=Sum of marks of x boys in the examination

+ Sum of marks of y girls in the examination

$$\Rightarrow 71(x+y) = 70x + 73y$$

$$\Rightarrow /1 \times + /1 y = /0 \times + /3 y$$

 $\overrightarrow{y} = \overrightarrow{1}$

 \Rightarrow x : y = 2 : 1

Thus, the ratio of number of boys to the number of girls is 2:1.

Exercise 19(B)

Solution 1:

(i)Firstly arrange the numbers in ascending order

16, 16, 19, 25, 26, 28, 31, 32, 35

Now since

n=9(odd)

Therefore Median

$$= \left(\frac{n+1}{2}\right)^{th}$$
$$= \left(\frac{9+1}{2}\right)^{th}$$
$$= 5^{th}$$

Thus the median is 26

(ii)

Firstly arrange the numbers in ascending order

241, 243, 257, 258, 261, 271, 292, 299, 327, 347, 350

Now since n=11(Odd)

Median = value of
$$\left(\frac{n+1}{2}\right)^{th}$$
 term
= 6thterm
= 271
Thus median is 271.

(iii) Firstly arrange the numbers in ascending order

9, 14, 17, 21, 25, 34, 43, 50, 50, 63

Now since n=10(even)

$$Median = \frac{1}{2} \left[value of \left(\frac{n}{2}\right)^{th} term + value of \left(\frac{n}{2} + 1\right)^{th} term \right]$$
$$= \frac{1}{2} \left[value of \left(\frac{10}{2}\right)^{th} term + value of \left(\frac{10}{2} + 1\right)^{th} term \right]$$
$$= \frac{1}{2} \left[25 + 34 \right]$$
$$= \frac{1}{2} \left[59 \right]$$
$$= 29.5$$

Thus the median is 29.5

(iv) Firstly arrange the numbers in ascending order

173,185,189,194,194,200,204,208,220,223

$$Median = \frac{1}{2} \left[value of \left(\frac{n}{2} \right)^{th} term + value of \left(\frac{n}{2} + 1 \right)^{th} term \right]$$
$$= \frac{1}{2} \left[value of \left(\frac{10}{2} \right)^{th} term + value of \left(\frac{10}{2} + 1 \right)^{th} term \right]$$
$$= \frac{1}{2} \left[200 + 194 \right]$$
$$= \frac{1}{2} \left[394 \right]$$
$$= 197$$

Thus the median is 197

CLICK HERE

Solution 2:

Given numbers are 34, 37, 53, 55, x, x+2, 77, 83, 89, 100

Here n = 10(even)

$$\begin{aligned} \text{Median} &= \frac{1}{2} \left[\text{value of} \left(\frac{n}{2} \right)^{th} \text{term} + \text{value of} \left(\frac{n}{2} + 1 \right)^{th} \text{term} \right] \\ &= \frac{1}{2} \left[\text{value of} \left(\frac{10}{2} \right)^{th} \text{term} + \text{value of} \left(\frac{10}{2} + 1 \right)^{th} \text{term} \right] \\ &= \frac{1}{2} \left[\text{value of} \left(5 \right)^{th} \text{term} + \text{value of} \left(5 + 1 \right)^{th} \text{term} \right] \\ &= \frac{1}{2} \left[\text{value of} \left(5 \right)^{th} \text{term} + \text{value of} \left(6 \right)^{th} \text{term} \right] \\ &= \frac{1}{2} \left[\text{value of} \left(5 \right)^{th} \text{term} + \text{value of} \left(6 \right)^{th} \text{term} \right] \\ &= \frac{1}{2} \left[\text{value of} \left(5 \right)^{th} \text{term} + \text{value of} \left(6 \right)^{th} \text{term} \right] \\ &= \frac{1}{2} \left[x + x + 2 \right] \\ &\Rightarrow \frac{\left[2 + 2x \right]}{2} = 63 \\ &\Rightarrow x + 1 = 63 \\ &\Rightarrow x = 62 \end{aligned}$$

Solution 3:

For any given set of data, the median is the value of its middle term.

Here, total observations = n = 10 (even)

If n is even, we have

Median =
$$\frac{1}{2} \left[\text{value of} \left(\frac{n}{2} \right)^{\text{th}} \text{ term + value of} \left(\frac{n}{2} + 1 \right)^{\text{th}} \text{ term} \right]$$

Thus, for n = 10, we have

Median =
$$\frac{1}{2} \left[\text{value of} \left(\frac{10}{2} \right)^{\text{th}} \text{term} + \text{value of} \left(\frac{10}{2} + 1 \right)^{\text{th}} \text{term} \right]$$

= $\frac{1}{2} \left[\text{value of 5}^{\text{th}} \text{term} + \text{value of 6}^{\text{th}} \text{term} \right]$

Hence, if 7th number is diminished by 8, there is no change in the median value.

Solution 4:

Here, total observations = n = 10 (even)

Thus, we have

$$\begin{aligned} \text{Median} &= \frac{1}{2} \left[\text{value of} \left(\frac{10}{2} \right)^{\text{th}} \text{ term + value of} \left(\frac{10}{2} + 1 \right)^{\text{th}} \text{ term} \right] \\ &= \frac{1}{2} \left[\text{value of 5}^{\text{th}} \text{ term + value of 6}^{\text{th}} \text{ term} \right] \end{aligned}$$

According to given information, data in ascending order is as follows:

	1 st Term	2 nd Term	3 rd Term	4 th Term	5 th Term	6 th Term	7 th Term	8 th Term	9 th Term	10 th Term
Marks	Less than 30		35	40	48	66	More than 75		'5	

: Median =
$$\frac{1}{2}(40 + 48) = \frac{88}{2} = 44$$

Hence, the median score of the whole group is 44.

Solution 5:

Total number of observations = 9(odd) Now, if n = odd Median = $\left(\frac{n+1}{2}\right)^{\text{th}}$ term \Rightarrow Median = $\left(\frac{9+1}{2}\right)^{\text{th}}$ term = 5th term = x + 5 Now, Median = 18 (given) $\therefore x + 5 = 18$ $\Rightarrow x = 13$

Exercise 19(C)

Solution 1:

Mean of the given data = $\frac{8 + 12 + 16 + 22 + 10 + 4}{6}$

$$=\frac{72}{6}=12$$

(i) Multiplied by 3

If \overline{x} is the mean of n number of observations $x_1, x_2, x_3, ..., x_n$, then mean of $ax_1, ax_2, ax_3, ..., ax_n$ is $a\overline{x}$. Thus, when each of the given data is multiplied by 3, the mean is also multiplied by 3. Mean of the original data is 12. Hence, the new mean = 12 \times 3 = 36.

(ii) Divided by 2

If \overline{x} is the mean of n number of observations $x_1, x_2, x_3, ..., x_n$,

then mean of $\frac{x_1}{a}, \frac{x_2}{a}, \frac{x_3}{a}, ..., \frac{x_n}{a}$ is $\frac{x}{a}$. Thus, when each of the given data is divided by 2, the mean is also divided by 3. Mean of the original data is 12. Hence, the new mean $=\frac{12}{2}=6$.

(iii) multiplied by 3 and then divided by 2

If \overline{x} is the mean of n number of observations $x_1, x_2, x_3, \dots, x_n$, then mean of $\frac{a}{b}x_1$, $\frac{a}{b}x_2$, $\frac{a}{b}x_3$, \dots , $\frac{a}{b}x_n$ is $\frac{a}{b}\overline{x}$. Thus, when each of the given data is multiplied by $\frac{3}{2}$, the mean is also multiplied by $\frac{3}{2}$. Mean of the original data is 12. Hence, the new mean = $\frac{3}{2} \times 12 = \frac{36}{2} = 18$

(iv) increased by 25%

New mean = Original mean + 25% of original mean \Rightarrow New mean = 12 + 25% of 12 \Rightarrow New mean = 12 + $\frac{25}{100} \times 12$ \Rightarrow New mean = 12 + $\frac{1}{4} \times 12$ \Rightarrow New mean = 12 + 3 \Rightarrow New mean = 15

(v) decreased by 40%

New mean = Original mean - 40% of original mean \Rightarrow New mean = 12 - 40% of 12 \Rightarrow New mean = 12 - $\frac{40}{100} \times 12$ \Rightarrow New mean = 12 - $\frac{2}{5} \times 12$ \Rightarrow New mean = 12 - 0.4 $\times 12$ \Rightarrow New mean = 12 - 4.8 \Rightarrow New mean = 7.2

Solution 2:

Mean of giver	18 + 24 + 1	$\frac{15+2x+1+12}{5}$
⇒	$21 = \frac{70 + 2x}{5}$	5
\Rightarrow	$5 \times 21 = 70 + 2x$	
\Rightarrow	105 = 70 + 2x	
\Rightarrow	2x = 105 - 70	
\Rightarrow	2x = 35	
⇒	$x = \frac{35}{2}$	
\Rightarrow	× = 17.5	

Solution 3:

Let $\overline{\times}$ be the mean of n number of observations $\times_1,\times_2,\times_3,\ldots,\times_n$ Mean of given data= $\frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$ Given that mean of 6 numbers is 42. That is, $\frac{X_1 + X_2 + X_3 + \ldots + X_6}{6} = 42$ $\Rightarrow x_1 + x_2 + x_3 + \dots + x_6 = 6 \times 42$ $\Rightarrow x_1 + x_2 + x_3 + x_4 + x_5 = 252 - x_6 \dots (1)$ Also, given that the mean of 5 numbers is 45. That is, $\frac{\times_1 + \times_2 + \times_3 + \times_4 + \times_5}{5} = 45$ $\Rightarrow \times_1 + \times_2 + \times_3 + \times_4 + \times_5 = 5 \times 45$ $\Rightarrow x_1 + x_2 + x_3 + x_4 + x_5 = 225....(2)$ From equations (1) and (2), we have, $x_1 + x_2 + x_3 + x_4 + x_5 = 252 - x_6 = x_1 + x_2 + x_3 + x_4 + x_5 = 225$ 252 - X₄ = 225 ⇒ x₆ = 252 - 225 = 27

Solution 4:

Let \overline{x} be the mean of n number of observations $x_1, x_2, x_3, \dots, x_n$ Mean of given data = $\frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$ Given that mean of 10 numbers is 24. That is, $\frac{X_1 + X_2 + X_3 + \ldots + X_{10}}{10} = 24$ $\Rightarrow x_1 + x_2 + x_3 + \dots + x_{10} = 10 \times 24$ $\Rightarrow x_1 + x_2 + x_3 + \dots + x_{10} = 240$ $\Rightarrow x_1 + x_2 + x_3 + \dots + x_{10} + x_{11} = 240 + x_{11} \dots (1)$ Also, given that mean of 11 numbers is 25. That is, $\frac{X_1 + X_2 + X_3 + \ldots + X_{10} + X_{11}}{44} = 25$ $\Rightarrow x_1 + x_2 + x_3 + \dots + x_{10} + x_{11} = 11 \times 25$ $\Rightarrow \times_1 + \times_2 + \times_3 + \ldots + \times_{10} + \times_{11} = 275....(2)$ From equations (1) and (2), we have: $X_1 + X_2 + X_3 + \dots + X_{10} + X_{11} = 240 + X_{11} = 275$ $240 + x_{11} = 275$ ⇒ x₁₁ = 275 - 240 = 35

Solution 5:

Consider the given data: 44, 47, 63, 65, x+13, 87, 93, 99, 110 Here the number of observations is 9, which is odd.

Thus, the median of the given data is $\left(\frac{n+1}{2}\right)^{th}$ observation. From the given data, $\left(\frac{9+1}{2}=5\right)^{th}$ observation is x + 13Also, given that the median is 78. Thus, we have x + 13 = 78 $\Rightarrow x = 78 - 13$ $\Rightarrow x = 65$

Solution 6:

Consider the given data:

24, 27, 43, 48, x - 1, x + 3, 68, 73, 80, 90. Here the number of observations is 10, which is even. Thus, the median of given data is $\frac{1}{2}\left[\left(\frac{n}{2}\right)^{th} \operatorname{term} + \left(\frac{n}{2} + 1\right)^{th} \operatorname{term}\right]$. From the given data, $\left(\frac{10}{2} = 5\right)^{th}$ observation is x - 1 and $\left(\frac{10}{2} + 1 = 6\right)^{th}$ observation is x + 3. Also, given that the median is 58. Thus, we have $\frac{1}{2}[x - 1 + x + 3] = 116$ $\Rightarrow 2x + 2 = 116$ $\Rightarrow 2x = 116 - 2$ $\Rightarrow 2x = 114$ $\Rightarrow x = \frac{114}{2}$

Solution 7:

Let \overline{x} be the mean of n number of observations $x_1, x_2, x_3, \dots, x_n$

Mean = $\frac{x_1 + x_2 + x_3 + ... + x_n}{n}$ Therefore, Mean of given data= $\frac{30 + 32 + 24 + 34 + 26 + 28 + 30 + 35 + 33 + 25}{10}$ $= \frac{297}{10}$ = 29.7

(i)

Let us tabulate the observations and their deviations from the mean

Observations	Devaiations
×i	$x_i - \overline{x}$
30	0.3
32	2.3
24	-5.7
34	4.3
26	-3.7
28	-1.7
30	0.3
35	5.3
33	3.3
25	-4.7
Total	0

From the table, it is clear that the sum of the deviations from (ii)

Consider the given data:

30, 32, 24, 34, 26, 28, 30, 35, 33, 25 Let us rewrite the above data in ascending order. 24, 25, 26, 28, 30, 30, 32, 33, 34, 35 There are 10 observations, which is even.

Therefore, median =
$$\frac{1}{2} \left[\left(\frac{n}{2} \right)^{\text{th}} \text{term} + \left(\frac{n}{2} + 1 \right)^{\text{th}} \text{term} \right]$$

= $\frac{1}{2} \left[\left(\frac{10}{2} \right)^{\text{th}} \text{term} + \left(\frac{10}{2} + 1 \right)^{\text{th}} \text{term} \right]$
= $\frac{1}{2} \left[(5)^{\text{th}} \text{term} + (5+1)^{\text{th}} \text{term} \right]$
= $\frac{1}{2} \left[5^{\text{th}} \text{term} + 6^{\text{th}} \text{term} \right]$
= $\frac{1}{2} \left[30 + 30 \right]$
= $\frac{1}{2} \left[60 \right]$
= 30

Solution 8:

Let $\bar{\times}$ be the mean of n number of observations $\times_1, \times_2, \times_3, ..., \times_n$

Mean =
$$\frac{X_1 + X_2 + X_3 + ... + X_n}{n}$$

Therefore,
Mean of given data= $\frac{35 + 48 + 92 + 76 + 64 + 52 + 51 + 63 + 71}{9}$
= $\frac{552}{9}$
= 61.33

Let us rewrite the given data in ascending order:

Thus, we have

35, 48, 51, 52, 63, 64, 71, 76, 92

There are 9 observations, which is odd.

Therefore, median =
$$\left(\frac{n+1}{2}\right)^{th}$$
 observation
 \Rightarrow Median = $\left(\frac{9+1}{2}\right)^{th}$ observation
 \Rightarrow Median = $\left(\frac{10}{2}\right)^{th}$ observation
 \Rightarrow Median = 5thobservation
 \Rightarrow Median = 63

If 51 is replaced by 66, the new set of data in ascending order is:

35, 48, 52, 63, 64, 66, 71, 76, 92

Since median = 5thobservation, We have, new median = 64

Solution 9:

Let \bar{x} be the mean of n number of observations $x_1, x_2, x_3, \ldots, x_n$

Mean =
$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

Therefore,
Mean of given data = $\frac{x + x + 2 + x + 4 + x + 6 + x + 8}{5}$
= $\frac{5x + 20}{5}$
= $x + 4$
Also, it's given that mean of the given data is 11.

Also, it's given that mean of the given data is 11. $\Rightarrow x + 4 = 11$ $\Rightarrow x = 7$

Hence the mean of the first three observations = $\frac{x + x + 2 + x + 4}{3}$ = $\frac{3x + 6}{3}$

$$=\frac{3X + 6}{3}$$

= X + 2
= 7 + 2
= 9

Solution 10:

Let us find the factors of 72:

- $72 = 1 \times 72$
 - =2x36
 - $= 3 \times 24$
 - = 4×18
 - = 6 × 12
 - = 8×9
 - = 9×8
 - $= 12 \times 6$
 - = 18×4
 - = 24×3
 - = 36 x 2
 - $= 72 \times 1$

Therefore, the data set is:

1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Mean of the above data set= $\frac{1+2+3+4+6+8+9+12+18+24+36+72}{12}$ $=\frac{195}{12}$ = 16.25

Since the number of observations is 12, which is even, median is given by

Median =
$$\frac{1}{2} \left[\left(\frac{n}{2} \right)^{th} \operatorname{term} + \left(\frac{n}{2} + 1 \right)^{th} \operatorname{term} \right]$$

= $\frac{1}{2} \left[\left(\frac{12}{2} \right)^{th} \operatorname{term} + \left(\frac{12}{2} + 1 \right)^{th} \operatorname{term} \right]$
= $\frac{1}{2} \left[6^{th} \operatorname{term} + 7^{th} \operatorname{term} \right]$
= $\frac{1}{2} \left[8 + 9 \right]$
= $\frac{1}{2} \times 17$
= 8.5